Abstract

AbstractConductance through a large two‐level quantum dot is investigated theoretically in the strong coupling regime. In large quantum dots the separation between discrete levels becomes smaller than the level width due to strong hybridization with electrodes. In such circumstances, apart from strong electronic correlations in the quantum dot, the indirect interaction between both the spatial levels comes into play. It takes place in lateral quantum dots, where the spatial level index is not conserved during the hybridization process with electrodes. This interaction shifts the Kondo resonance peak in the density of states out of the Fermi surface and alters its intensity. This feature can be observed in the differential conductance dependence vs. bias voltage. The virtual inter‐level mixing is suppressed for temperatures above the Kondo temperature of the system. The results of theoretical predictions are compared with the results of experimental conductance measurements performed on large quantum dots and some non‐typical conductance features are clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.