Abstract

In order to study the electronic properties of conjugated polymer nanowire junctions, we have fabricated two devices consisting of two crossed poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires with platinum microleads attached to each end of each nanowire. We find that the junction resistance of the crossed nanowires is much larger than the intrinsic resistance of the individual PEDOT nanowire, and increases with decreasing temperature, which can be described by a thermal fluctuation-induced tunneling conduction model. In addition, the crossed junctions show linear current-voltage characteristics at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.