Abstract

The statistical properties of the electronic conductance through a ballistic quantum dot are studied by means of an information-theoretic statistical model for the scattering matrix. The model, introduced in the past in the context of nuclear physics, describes the problem in terms of a prompt and an equilibrated component: it incorporates the average value of the scattering matrix to describe the prompt processes and satisfies the requirements of flux conservation, causality and ergodicity. The model describes well the results arising from the numerical solution of the Schrödinger equation for two-dimensional quantum cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.