7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1088/1361-6463/ac2f17
Copy DOIPublication Date: Oct 29, 2021 | |
Citations: 2 | License type: iop-standard |
In this work, we present a self-energy model based on the complex absorbing potential (CAP) method to calculate the transmission function through an extended molecule using scattering theory. Once the CAP mimics an infinite environment at the ends of a finite system, it can be used as a model for self-energy with a low computational cost. Moreover, the matrixes required for the transport calculation can be obtained from an ab initio calculation of some extended molecules in a single step using an adjustable model, thus taking into account changes in the electronic structure of the system. This approach was applied to study electron transport across a biphenyl molecular system for different torsion angles under an external applied electric field. The results obtained are in good agreement with the available theoretical and experimental results in the literature and provide an efficient approach, with a low computational cost method, for the interpretation of electrical transport at the molecular level.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.