Abstract

The structures and electronic transport properties of ultra-thin Ni and Ni-C nanowires obtained from carbon nanotube (CNT) templates are theoretically investigated. C atoms tend to locate at the central positions of nanowires and are surrounded by Ni atoms. Spin polarization at the Fermi level is not responsible for the spin filtration of these nanowires. Increasing C concentration can improve the resistance of nanowires by abating the number of electronic transmission channels and the coupling of electron orbitals between Ni atoms. Moreover, with the increase of diameter, the conductance of these nanowires increases as well. This study is helpful for guiding the synthesis of nanowires with desired applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.