Abstract
The electronic transport properties of the 1,1'-ferrocene dicarboxylic acid sandwiched between Al(111) electrodes are studied using first-principles methods. The transmission spectra and the current-voltage characteristics are computed for various two-terminal device models and their relation with the electronic structure of the molecule is thoroughly discussed. The current-voltage characteristics are asymmetric, spin-independent, and vary with the anchoring structure of the molecule to the electrodes. A fine-tuning of the molecular conductance can be easily achieved by applying a gate potential, which is included in our simulations. Interestingly, a spin-polarized current can emerge as a consequence of the gate potential with the relative contribution of the two spin channels varying with the bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.