Abstract

Eumelanin is the most common form of the pigment melanin in the human body, with diverse functions including photoprotection, antioxidant behavior, metal chelation, and free radical scavenging. Melanin also plays a role in melanoma skin cancer and Parkinson's disease. Sepia melanin is a natural eumelanin extracted from the ink sac of cuttlefish. Eumelanin is an ideal candidate to eco-design technologies based on abundant, biosourced, and biodegradable organic electronic materials to alleviate the environmental footprint of the electronics sector. Herein, the focus is on the reversible electrical resistive switching in dry and wet Sepia eumelanin pellets, pointing to the possibility of predominant electronic transport satisfying conditio sine qua non to develop melanin-based electronic devices. These findings shed light on the possibility to describe the transport physics of dry eumelanin using the amorphous semiconductor model. Results are of tremendous importance for the development of sustainable organic electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.