Abstract

A combined modulated free carrier absorption (MFCA) and photocarrier radiometry (PCR) technique is developed to determine simultaneously the electronic transport properties (carrier diffusion coefficient, carrier lifetime, and front surface recombination velocity) of silicon wafers. Comparative computer simulations are carried out to investigate how the experimental measurement errors affect the simultaneous determination of the electronic transport parameters by introducing random or systematic errors into the simulated MFCA and PCR data and statistically analyzing the fitted results, by means of separate MFCA and PCR, as well as the combined MFCA and PCR through fitting the experimental dependences of signal amplitudes and phases to the corresponding theoretical models via a multiparameter fitting procedure, respectively. The simulation results show that with the combined MFCA and PCR the effect of experimental errors on the simultaneous determination of the transport parameters is significantly reduced and therefore the accuracy of the fitted results is greatly improved. Experiments with two c-Si wafers with the three methods were performed and the results were compared. The experimental results showed that the combined MFCA and PCR provided the most accurate fitted transport parameters, in agreement with the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.