Abstract

The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called ‘open’ interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in ‘closed’ interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the ‘bare’ QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a Π lapse. Therefore, closed mesoscopic interferometers can be used to address the ‘universal phase lapse’ problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses.

Highlights

  • The phase of the wave function is a pure quantum mechanical property, without a direct correspondence in classical physics

  • Another reason for the increasing interest in the phase problem is a number of intriguing, and so far unexplained, results of the phase-measuring experiments, such as the phase lapse problem which was called by some authors ‘the longest standing puzzle in mesoscopic physics’

  • We have shown that important transmittance phase information can be extracted using the so-called ‘closed’ mesoscopic interferometers, in spite of the fact that multiple interferences are in this case allowed, and it was generally believed that a correct phase extraction would be blurred

Read more

Summary

Introduction

The phase of the wave function (of an electron, for instance) is a pure quantum mechanical property, without a direct correspondence in classical physics. The phase coherence lies in the very definition of mesoscopic physics and plays a key role in phenomena such as quantum interference or bonding of molecular orbitals. Another reason for the increasing interest in the phase problem is a number of intriguing, and so far unexplained, results of the phase-measuring experiments, such as the phase lapse problem (of the transmittance phase between the resonances of a quantum dot, QD) which was called by some authors ‘the longest standing puzzle in mesoscopic physics’ (see e.g., [1]). An open interferometer has supplementary terminals called base zones with the aim to absorb the electrons scattered at contacts and to forbid multiple encirclements of the ring

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call