Abstract

Recent experiments showed that Co undergoes a phase transition from ferromagnetic hcp phase to non-magnetic fcc one around 100 GPa. Since the transition is of first order, a certain region of co-existence of the two phases is present. By means of \textit{ab initio} calculations, we found that the hcp phase itself undergoes a series of electronic topological transitions (ETTs), which affects both elastic and magnetic properties of the material. Most importantly, we propose that the sequence of ETTs lead to the stabilisation of a non-collinear spin arrangement in highly compressed hcp Co. Details of this non-collinear magnetic state and the interatomic exchange parameters that are connected to it, are presented here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.