Abstract

In this article, the nonlinear parameters of a throttle valve were analyzed and calculated to predict its dynamic characteristics. A mathematical model considering nonlinear parameters is employed to improve the control performance over the throttle valve. Electrical nonlinearity is caused by the brush and commutator. A brush contact resistance is generated due to the contact between the brush and commutator. The brush contact resistance is affected by the rotor speed and the input current. Furthermore, mechanical nonlinearity is caused by the limp-home mode in the spring. The torque produced by the spring varies with the valve angle. As it is difficult to estimate nonlinear parameters accurately, electrical and mechanical parameters were calculated experimentally. In addition, a block diagram considering the nonlinearity of the electrical and mechanical parameters was developed. Finally, the test and simulation results were compared to validate the estimated nonlinear parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.