Abstract
Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show – with simulations and REXS on Mn-substituted Sr3Ru2O7 – that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that – in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and Mössbauer spectroscopy – randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.