Abstract

Two-dimensional (2D) materials with binary compounds, such as transition-metal chalcogenides, have emerged as complementary materials due to their tunable band gap and modulated electrical properties via the layer number. Ternary 2D materials are promising in nanoelectronics and optoelectronics. According to the calculation of density functional theory, in this work, we study the electronic structures of ternary 2D materials: monolayer Mo1-xCrxS2 and W1-xCrxS2. They are mainly based on monolayer molybdenum disulfide and tungsten disulfide and have tunable direct band gaps and work functions via the different mole fractions of chromium (Cr). Meanwhile, the Cr atoms deform the monolayer structures and increase their thicknesses. Induced by different mole fractions of Cr material, energy band diagrams, the projected density of states, and charge transfers are further discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call