Abstract

The intramolecular hydrogen bond, molecular structure, π electrons delocalization, and vibrational frequencies in 1-(2-iminoethylidene) silan amine and its derivatives have been investigated by means of density functional method with 6-311++G** basis set, in gas phase, water, and carbon tetrachloride solutions. The obtained results showed that the hydrogen bond strength is mainly governed by resonance variations inside the chelate ring induced by the substituent groups. Furthermore, the topological properties of the electron density distributions for N–H···N intramolecular hydrogen bond were analyzed in terms of the Bader's theory of atoms in molecules. On the other hand, the aromaticity of the ring formed is measured using several well-established indices of aromaticity such as nucleus-independent chemical shift, harmonic oscillator models of the aromaticity, para-delocalization index, average two-center indices, aromatic fluctuation index, and π-fluctuation aromatic index. Natural population analysis data, the electron density and Laplacian properties, as well as γ(NH) and ν(NH) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call