Abstract

The structural, elastic, electronic and magnetic properties of the cubic [Formula: see text] anti-perovskite are investigated by means of the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). We have used three approximations: the generalized gradient (GGA), the GGA+[Formula: see text][Formula: see text], where [Formula: see text] is on-site Coulomb interaction correction, and the modified Becke–Johnson (mBJ-GGA). The elastic constants [Formula: see text] show that our compounds are ductile and anisotropic. The results obtained for the spin-polarized band structure and the density of states show a half-metallic behavior for the compounds using the GGA, GGA+[Formula: see text][Formula: see text] and mBJ-GGA approaches. These results make [Formula: see text] a promising candidate for spintronics applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.