Abstract

The electronic structures and second-order nonlinear optical (NLO) properties of a series of Pt―Pt bond-containing metal complexes were calculated using density factional theory (DFT) combined with the finite field (FF) method. The results show that the replacement of a conjugated ligand does not substantially affect the Pt―Pt bond. Additionally, the strength of charge transfer (CT) from the ligand to the metal group increases as the length of the conjugated ligand becomes longer. The first-order hyperpolarizabilities of these metal complexes increase as the length of the conjugated ligand becomes longer but this is not sensitive to the change in charge of these metal complexes. Complex IId containing a relevant long π-conjugated ligand possesses the largest first-order hyperpolarizability according to our DFT-FF calculations. Time-dependent (TD)-DFT calculations show that the π→π* intraligand mixing metal to ligand charge transfer transitions directly contribute to the second-order NLO response of the Pt―Pt bond-containing metal complex IId.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.