Abstract

Two-dimensional (2D) materials exhibit different electronic properties than their bulk materials. Here, we present a systematic study of 2D tetragonal materials of ScN and YN using density functional theory calculations. Several thermodynamically stable 2D tetragonal structures were determined, and such novel tetragonal structures have good electronic and optical properties. Both bulk ScN and YN are indirect band gap semiconductors while the electronic structures of 2D ScN and YN are indirect gap semiconductors, with band gaps of 0.62–2.21 eV. The calculated optical spectra suggest that 2D tetragonal ScN and YN nanosheets have high visible light absorption efficiency. These electronic properties indicate that 2D ScN and YN have great potential for applications in photovoltaics and photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.