Abstract

The electronic structures and magnetism of Fe nanowires along the [110] direction on Cu(001) and Ag(001) [Fe(nw)/Cu(001) and Fe(nw)/Ag(001)] are investigated by using the all-electron full-potential linearized augmented plane wave method in the generalized gradient approximation. It is found that the magnetic moment of Fe atom for the Fe(nw)/Cu(001) is 2.99 μB, which is slightly smaller than that (3.02 μB) for the Fe(nw)/Ag(001) but much larger than that (2.22 μB) for the bcc iron. The great enhancement of magnetic moment in the Fe nanowires can be explained by the Fe d-band narrowing and enhancement of the spin-splitting due to a reduction in coordination number. From the calculated spin-polarized layer-projected density of states, it is found that the Fe 3d-states are strongly hybridized with the adjacent Cu 3d-states in the Fe(nw)/Cu(001), and there exists a strong hybridization between the Fe sp- and the adjacent Ag 4d-states in the Fe(nw)/Ag(001).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call