Abstract

One-dimensional nanoribbons usually exhibit considerably different properties compared to their monolayer counterparts due to the formation of edge states and limited width. In this study, we systematically investigate the stability, electronic structures and magnetic properties of CrSiTe3 single-layer nanoribbons with different edge configurations and ribbon widths using first-principles calculations. The results show that the edge energies (less than 0.4 eV/Å) for all studied CrSiTe3 nanoribbons are much lower than that of graphene and many transition-metal dichalcogenide nanoribbons, indicating their stability and easy formation. Compared to the CrSiTe3 monolayer with ferromagnetic semiconductor characteristics, some of CrSiTe3 nanoribbons (N-SiCr-ZNRs, N-Te-ZNRs, N-TeCr-ANRs and N-Te-ANRs) become half-metal due to the hybridization between the d orbitals of edge Cr atoms and the p orbitals of edge Te atoms. While N-SiTe-ANRs are bipolar magnetic semiconductors, in which the states near Fermi level are localized around the nanoribbons edge. Our results show that CrSiTe3 single-layer nanoribbons are promising candidates suitable for applications in spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call