Abstract

The first-principle calculation method based on the density functional theory (DFT) in combination with the LDA+U algorithm is employed to study the electronic structure and magnetic properties of Co/Mn co-doped ZnO nanowires. Special attention is paid to the optimal geometric replacement position, the coupling mechanism, and the magnetic origin of Co/Mn atoms. According to the simulation data, Co/Mn co-doped ZnO nanowires of all configurations exhibit ferromagnetism, and substitution of Co/Mn atoms for Zn in the (0001) inner layer brings nanowires to the ground state. In the magnetic coupling state, the obvious spin splitting is detected near the Fermi level, and strong hybridization effects are observed between the Co/Mn 3d and O 2p states. Moreover, the ferromagnetic ordering forming Co2+-O2−-Mn2+ magnetic path is established. In addition, the calculation results suggest that the magnetic moment mainly takes its origin from the Co/Mn 3d orbital electrons, and the size of the magnetic moment is related to the electronic configurations of Co/Mn atoms. Therefore, a realistic description of the electronic structure of Co/Mn co-doped ZnO nanowires, obtained via LDA+U method, shows their potential for diluted magnetic semiconductor materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call