Abstract

Oxygen adsorption on delta-Pu (100) and (111) surfaces have been studied at both non-spin-polarized and spin-polarized levels using the generalized gradient approximation of density functional theory (GGA-DFT)with Perdew and Wang functionals. The center position of the (100) surface is found to be the most favorable site with chemisorption energies of 7.386 eV and 7.080 eV at the two levels of theory. The distances of the oxygen adatom from the Pu surface are found to be 0.92A and 1.02A, respectively. For the (111) surface non-spin-polarized calculations, the center position is also the preferred site with a chemisorption energy of 7.070 eV and the distance of the adatom being 1.31A, but for spin-polarized calculations the bridge and the center sites are found to be basically degenerate, the difference in chemisorption energies being only 0.021 eV. In general, due to the adsorption of oxygen, plutonium 5f orbitals are pushed further below the Fermi energy, compared to the bare plutonium layers. The work function, in general, increases due to oxygen adsorption on plutonium surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.