Abstract
Using high-resolution angle-resolved photoemission, the electronic structure of YBa 2Cu 3O x is examined when oxygen stoichiometries are varied in the range 6.2≤×≤6.9. Detailed measurements of the Fermi surface for YBa 2Cu 3O 6.9 are presented and are compared with predictions of band theory. In the metallic region of the phase diagram, changes in the Fermi surfaces are measured as a function of oxygen stoichiometry. The electronic structure is monitored as the oxide changes from a metal to a semiconductor with additional oxygen depletion. For intermediate stoichiometries, effects of oxygen-vacancy ordering are considered. Unusual resonant effects observed at several photon energies are examined as the oxygen content is varied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.