Abstract

Silver oxide cluster cations (AgnOm+) can readily be produced by a number of methods including atmospheric-pressure spark ablation of pure silver electrodes when trace amounts of oxygen are present in the carrier gas. Here we determine the equilibrium geometries of AgnOm+ clusters (n = 1-4; m = 1-5) using accurate coupled cluster with singles and doubles (CCSD) method, while the stabilization energies are calculated with additional perturbative triples correction (CCSD(T)). Although a number of stable states have been identified, our results show that the AgnOm+ clusters with m = 1 are more stable than those with m ≥ 2 due to the absence of the terminally attached O2 molecule, corroborating recent observations by mass spectrometry. Using the computed structures, we calculate the electrical mobilities of the AgnOm+ clusters and label the values on a respective experimentally determined spectrum in an attempt to better interpret the occurrence of the peaks and troughs in the measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call