Abstract

The structural properties and the phase transition for scandium carbide (ScC) have been studied in NaCl (B1), CsCl (B2), ZB (B3), WZ (B4), NiAs (B81), WC (B h ), and Pmmn structures by using the pseudopotential plane-wave method in the framework of the density functional theory. Our theoretical results show that the most stable structure is the B1 phase, contrary to the result of Rahim et al. The phase transitions B1 → Pmmn and Pmmn → B2 are predicted at 83.7 and 109.7 GPa, respectively. At the same time, we find that the B3, B4, B81, and B h phases are not stable over the whole pressure range considered. In particular, the elastic constants of Pmmn-ScC under high pressure are obtained successfully. The effects of pressure on the elastic properties of B1-ScC and Pmmn-ScC are also predicted. The Debye temperatures Θ and the sound velocities of these two structures are estimated from the elastic constants, and by analyzing G/B, the brittle-ductile behavior of ScC is assessed. In addition, the density of states of B1-ScC at high pressures is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.