Abstract

The electronic structure of vacancy-type defects in hexagonal boron nitride (h-BN) synthesized by chemical vapor deposition, promising for microelectronics, is studied. The research is carried out using X-ray photoelectron spectroscopy and a simulation within the density functional theory. It is shown that the h-BN bombardment with argon ions leads not only to the near-surface layer cleaning from organic pollutants, but also to the generation of a high intrinsic defects concentration, mainly boron-nitrogen divacances. The greater the boron-nitrogen divacances concentration is, the longer the bombardment time is. The boron-nitrogen divacansion in h-BN is a significantly more energetically favorable defect than that of isolated boron and nitrogen vacancies. It is concluded that the most probable diamagnetic vacancy-type defects capable of participating in localization and, as a consequence, in charge transport in h-BN films is the boron-nitrogen divacancy. Keywords: boron nitride (BN), photoelectron spectroscopy (XPS), quantum chemical simulation, density functional theory (DFT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call