Abstract

This paper describes a quantum chemical study of the electronic structure of thienylene vinylene oligomers ranging in size from two thienylene rings (2TV) to 12TV. The geometries of the TV oligomers in the ground state, the lowest triplet state, and the singly and doubly oxidized states were optimized using density functional theory calculations. The electronic absorption spectra were obtained from configuration interaction calculations with an INDO/s reference wave function. Comparison with experimental data shows that the agreement is satisfactory, except for the triplet−triplet absorption spectra. For closed shell systems (ground state and doubly occupied state), the spectra were also calculated by time dependent density functional theory (TDDFT). TDDFT considerably underestimates the neutral singlet−singlet excitation energies for longer chains. The nature of the excited states for the TV radical cations was found to be more similar to that of thiophenes than to that of phenylene vinylenes, indicating...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.