Abstract

The ground and excited electronic states of the titled species are investigated with multi-reference configuration interaction and diffuse basis sets. We found that in addition to the valence orbitals, the inclusion of the 4s, 4p, and especially 3d orbitals (although with minimal population) of silicon in the active space of the reference complete active space self-consistent field wavefunction are necessary for the proper convergence of the calculations. We also demonstrate that the aug-cc-pVTZ basis set provides quite accurate results compared to both larger basis sets and basis set limit results at a lower computational cost. The excited states involve excitations within the 3s and 3p orbitals of silicon (especially for the mono- and di-hydrides), followed by excitations from the Si-H bonding orbitals to either silicon valence or Rydberg (4s, 4p) orbitals. The number of electronic states per energy unit decrease as we add hydrogen atoms, and the first excited state of SiH4 is at 9.0 eV and leads to SiH3 + H. All species have stable ground state structures with all hydrogen atoms bound to silicon, except for SiH4+ and SiH4-. The former dissociates to SiH2+ + H2, while the latter loses an electron or can dissociate forming H2 as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.