Abstract

A method for the calculation of the electronic structure of interfaces is described and applied to the (100) Ge-GaAs and Ge-ZnSe heterojunctions. The method is based on the Koster-Slater scattering-theoretic technique. The interface is described as a local perturbation of an unperturbed system consisting of two initially noninteracting, lattice-matched bulk solids. The changes in their electronic structure due to the interface can be calculated very efficiently and accurately in terms of one-particle bulk Green's functions. We present interface band structures and wave-vector-integrated as well as wave-vector-resolved local densities of states for the Ge-GaAs and the Ge-ZnSe interfaces. All four interfaces give rise to essentially three interface bands in the valence-band region, those for Ge-ZnSe being more pronounced than those for Ge-GaAs. We compare our results with a previous calculation for the (100) Ge-Ga interface and with experiment. We conclude that stoichiometrically mixed interfaces are more likely to occur in nature than ideal (100) interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.