Abstract

Summary Recently; the 4-amino analogue of tetrahydrobiopterin was found to be a strong inhibitor of nitric oxide synthase while being bound to the enzyme in a manner similar to the natural cofactor tetrahydrobiopterin. We were interested in the electronic properties of these and similar compounds and studied therefore the following model tetrahydropteridine structures: tetrahydrolumazine, tetrahydropterin, 4-amino-analogue of tetrahydropterin and N5-methyl-tetrahydropterin. Ab initio quantum chemical computations used the Hartree- Fode method with basis set 6-31G** after geometry optimization with basis set 3-21G*. Results reveal dramatic differences in distribution of electronic charge and all the molecular properties derived thereof~ between a) the lumazine system, b) the normal pterin system, and c) the 4-amino analogue. In contrast, differences of electronic properties between tetrahydropterin and its N5-methyl-derivative are negligible. Our results are compatible with recent speculations that the striking differences between the effects of the tetrahydropterin struculrc and its 4-amino analogue on cnznllatic activity may be due to electronic interaction between the pyrimidine moiety of the ptcrin ring systcm and the heme group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.