Abstract

2,5-Dithienylthiazolo[5,4-d]thiazole (DTTzTz) derivatives have high potential for solution-processed organic field-effect transistors and solar cells, both as electron acceptors and donors. Here, the electronic structure of positive and negative radicals (polarons) of two functionalized DTTzTz materials is studied using multi-frequency and multi-resonance electron paramagnetic resonance (EPR) in combination with density functional theory (DFT). It is shown that the negative and positive DTTzTz polarons can be distinguished on the basis of their characteristic EPR parameters. The chemically induced polarons are compared to light-generated states observed in a blend of one of the DTTzTz derivatives with a donor polymer. The study gives in-depth information about the spread of the electron or hole in the DTTzTz molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.