Abstract

Silicon is of special interest in lithium-ion batteries (LIBs) since it has large theoretical specific capacity or volumetric capacity. The crystal structure, charge distribution and density of states of LiSi as the Li-poorest side compound at the start of Li intercalation mechanism for Si anode in LIBs has been studied by using density functional theory (DFT) calculations. The triangular pyramids are formed by four Li atoms in LiSi. Compared to the charge density of crystalline Si, the Si Si covalent bonds in LiSi become weak due to Li intercalation. On the other hand, the electrons around the Li atoms in LiSi increase compared to those in metallic Li. The Li atoms in LiSi have negative charge of 0.83–0.84. These electrons, which are transferred from p electrons in the Si atoms, are mainly made of p electrons of the Li atoms. When considering the lithium intercalation reaction from crystalline Si to LiSi, the average intercalation voltage is about 0.4 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.