Abstract
The electronic properties of three types of conducting polymers: trans-polyacetylene (proto-typical of systems with a degenerate ground state), polythiophene (as an example of compounds with a nondegenerate ground state), and polyemeraldine (which can be doped via protonation) are reviewed. The structural and electronic band structure properties of these systems are studied at various defect concentrations corresponding to undoped, lightly doped, and highly doped polymers. Geometry optimizations of oligomeric equivalents to the undoped and doped polymers are performed using the semi-empirical MNDO and AM1 methods. The electronic band structures are calculated using the VEH method. The interpretation of the optical absorption data is discussed in terms of interband transitions; for doped trans-polyacetylene including soliton defects and for doped polythiophene including bipolaron defects. For highly doped trans-polyacetylene and polythiophene as well as for protonated polyemeraldine, the electronic structure of a polaron lattice conformation is discussed and shown to be in agreement with existing optical and magnetic data on these polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.