Abstract

Within the effective-mass approximation, we investigate the electronic structure of hexagonal quantum-disc clusters using the finite element method. With an increasing amount of quantum dots in the cluster, the electronic energy levels quickly expand into mini-bands, each consisting of discrete, unevenly distributed energy levels. The corresponding electronic eigenfunctions are linear combinations of the electron orbits in each quantum dot. The spatial symmetry of the combination is the same as the electronic eigenfunction of a single quantum dot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.