Abstract

The electronic energy structure of gold nanoclusters grown on oxidized single-crystal stepped surface Ni(755) is studied. It is shown that oxidation of the stepped Ni(755) surface results in the formation of a well-ordered continuous structure O(2 × 2) similar to that grown on a flat Ni(111) single-crystal surface. Evaporation of gold on such a surface leads to the formation of gold nanoclusters of a size determined by the size of the terraces on the Ni(755) surface. A comparison of the photoelectron spectra of the Au 4f5/2, 7/2 core levels in clusters grown on clean and oxidized Ni(755) surfaces reveals that the spectra obtained for a gold cluster system on an oxidized Ni(755) surface contain not only the spectral components characteristic of metallic gold but also additional components of Au+δ. It is assumed that additional components for gold clusters on the oxidized Ni(755) surface originate from partial oxidation of gold atoms with the participation of defects inherent in the stepped relief of the nickel substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.