Abstract
Hexagonal boron nitride (hBN) is an essential component in van der Waals heterostructures as it provides high quality and weakly interacting interfaces that preserve the electronic properties of adjacent materials. While exfoliated flakes of hBN have been extensively studied using electron transport and optical probes, detailed experimental measurements of the energy- and momentum- dependent electronic excitation spectrum are lacking. Here, we directly determine the full valence band (VB) electronic structure of micron-sized exfoliated flakes of hBN using angle-resolved photoemission spectroscopy with micrometer spatial resolution. We identify the {\pi}- and {\sigma}-band dispersions, the hBN stacking order and determine a total VB bandwidth of 19.4 eV. We compare these results with electronic structure data for epitaxial hBN on graphene on silicon carbide grown in situ using a borazine precursor. The epitaxial growth and electronic properties are investigated using photoe- mission electron microscopy. Our measurements show that the fundamental electronic properties of hBN are highly dependent on the fabrication strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.