Abstract

A general approach for simulation of APR spectra of mixed-valence dimanganese complexes and proteins is presented, based on the theory of Sage et al. (J. Am. Chem. Soc. 1989, 111, 7239-7247), which overcomes limitations inherent in the theory of strongly coupled ions. This enables explanation of «anomalous» spectral parameters and extraction of accurate g tensors and 55 Mn magnetic hyperfine tensors from which the spatial distribution of the unpaired spin density, the electronic configuration, and ligand field parameters have been obtained. This is used to analyze highly accurate simulations of the APR spectra, obtained by least-squares fits of two mixed valence oxidation states, from a series of dimanganese(II,III) and dimanganese(III,IV) complexes and from the dimanganese catalase enzyme, MnCat(II,III) and MnCat(III,IV), from Thermus thermophilus

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.