Abstract

We present and discuss angle-resolved photoemission measurements from the (111) and (100) faces of CuAu single crystals containing 10 at. % Au in the bulk, together with computations of complex-energy bands and densities of states in the ${\mathrm{Cu}}_{90}$${\mathrm{Au}}_{10}$ random alloy. Our calculations permit a good understanding of the shifts and smearings in the spectrum of Cu arising from the addition of Au with respect to the Cu d-band complex, the (111) Shockley state, and the (100) Tamm state. The observed position and width of the Au-induced structure in the density of states is also in good accord with the theoretical result. Aspects of the electronic spectrum of CuAu are compared and contrasted with those of CuAl, CuPd, and CuNi solid solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.