Abstract
B3LYP and complete active space methods were applied to study graphene nanoribbons (GNRs) doped with boron atoms. The restricted B3LYP solutions were found to be unstable in all but two cases, and the complete active space calculations prove the multiconfigurational character of the ground state contributing with two most important configurations. The exception is the structure c4 where the system has single reference ground state in spite of the instability of the restricted wavefunction.The distance between dopant atoms, their mutual position and their location within the nanoribbon impact the relative stability of doped nanoribbons. B doping does not modify the ionisation potentials of doped GNRs. However, it notably increases the electron affinity of the core-doped nanoribbons. The doping also has a notable impact on the reorganisation energy of the nanoribbons. The reorganisation energy of B-doped GNRs is higher than the corresponding reorganisation energy of pristine and nitrogen-doped GNRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.