Abstract

The electronic band structure of antimony was determined theoretically by an ab initio density-functional calculation and compared to an experimental study by angle-resolved ultraviolet photoemission spectroscopy. Most of the experimental results can be explained by direct transitions to free-electron states in a potential V0, with good agreement between theory and experiment. Experimental quasiparticle energies for the three upper valence bands are given at GAMMA, T, U, W, L, and X. Some deviations, especially near T, are attributed to exchange-correlation self-energy effects. One experimentally observed band is tentatively identified as a surface state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.