Abstract

We used the DFT + U method to describe the modification of the physical properties induced by cationic point defects in cubic magnetite Fe3O4. We considered the case of Fe vacancies and interstitial atoms in non-stoichiometric magnetite, and of Frenkel defects in a stoichiometric crystal. For each of these defects, we give results on the modification of the magnetic moment of atoms near the defect. We describe the local reorganization of the electric charge which is responsible for changes in the average oxidation degree of Fe atoms. We show that gap states, when they exist, do not destroy the half-metallic character of magnetite. Fe defects, however, change the filling of bands crossing the Fermi level and must be mostly responsible for a decrease in the magnetization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.