Abstract

Striking a balance between the high performance and detrimental environmental toxicity of PbTe materials in thermoelectrics (TE) has become a necessity in the current situation. In this context, improving the performance of materials with lower lead content to the level of PbTe is crucial. Herein, we engineer the electronic structure of Pb0.6Sn0.4Te, a well-known TCI but a poor TE material by doping Zn. The first principles calculation reveal that Zn doping introduces multiple electronic valleys while simultaneously opening the band gap of Pb0.6Sn0.4Te. Higher power factor with lower thermal conductivity is predicted by the transport property calculations in the doped material. The resonance level introduced along with features of hyper-convergence of the valence bands leads to improved Seebeck co-efficient throughout the studied temperature range. An experimental figure of merit, ZT of ~1.57 at 840 K promises us a TE material applicable for a broad temperature range for future energy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call