Abstract

Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call