Abstract
Electron impact ionisation with full determination of the kinematics (measurement of energies and momenta of the incident, scattered and ejected electrons) has proven to be useful for investigating both the electronic structure of atoms and molecules and the mechanism of ionisation. These experiments are, by definition, coincidence experiments since it is necessary to be sure that all the detected electrons originate from the same collision. For single-electron ionisation, (e, 2e), the emphasis has been on momentum densities and spectroscopic factors–see for example Coplan et al. (1994), McCarthy and Weigold (1976, 1988, 1991) and Leung (1991). For double ionisation, (e,3e), data are just beginning to emerge, with early results on the Auger process and direct double ionisation (Duguet and Lahmam-Bennani 1992). Both (e, 2e) and (e, 3e) experiments are technically challenging because the signals are small and there is usually a large background. In the last few years, electrostatic spectrographs and position sensitive detectors have improved the resolution and precision of (e, 2e) measurements and have made (e,3e) measurements a practical reality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.