Abstract

Electronic structures, which play a key role in determining electrical and optical properties of π-conjugated organic materials, have attracted tremendous interest. Efficient thermoelectric (TE) conversion of organic materials has rigorous requirements on electronic structures. Recently, the rational design and precise modulation of electronic structures have exhibited great potential in exploring state-of-the-art organic TE materials. This review focuses on the regulation of electronic structures of organic materials toward efficient TE conversion. First, we present the basic knowledge regarding electronic structures and the requirements for efficient TE conversion of organic materials, followed by a brief introduction of commonly used methods for electronic structure characterization. Next, we highlight the key strategies of electronic structure engineering for high-performance organic TE materials. Finally, an overview of the electronic structure engineering of organic TE materials, along with current challenges and future research directions, are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.