Abstract

The electronic structure and electronic charge density of the monoclinic phase Di-2-pyrymidonium dichloride-di-iodide compound is studied by using the local density approximation (LDA) and Engel Vosko generalized gradient approximation (EVGGA). Using LDA for exchange correlation potential, we have optimized the atomic positions taken from the X-ray crystallographic data by minimization of the forces acting on the atoms. From the relaxed geometry the electronic structure, electronic charge density and the optical properties were determined. Band structures disclose that this compound has indirect energy band gap. The obtained energy band gap value using EVGGA (2.010eV) is larger than that obtained within LDA (1.781eV). To envision the chemical bonding nature between the composition of the investigated compound, the distribution of charge density was discussed in the (−101) crystallographic plane. The contour plot shows partial ionic and strong covalent bonding between C–O, N–C and C–H atoms. The optical properties of Di-2-pyrymidonium dichloride-di-iodide are obtained by the calculation of the dielectric function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.