Abstract

Three Pd(II) phthalocyanine-carotenoid dyads featuring chromophores linked by amide bonds were prepared in order to investigate the rate of triplet-triplet (T-T) energy transfer from the tetrapyrrole to the covalently attached carotenoid as a function of the number of conjugated double bonds in the carotenoid. Carotenoids having 9, 10 and 11 conjugated double bonds were studied. Transient absorption measurements show that intersystem crossing in the Pd(II) phthalocyanine takes place in 10 ps in each case and that T-T energy transfer occurs in 126, 81 and 132 ps in the dyads bearing 9, 10 and 11 double bond carotenoids, respectively. To identify the origin of this variation in T-T energy transfer rates, density functional theory (DFT) was used to calculate the T-T electronic coupling in the three dyads. According to the calculations, the primary reason for the observed T-T energy transfer trend is larger T-T electronic coupling between the tetrapyrrole and the 10-double bond carotenoid. A methyl group adjacent to the amide linker that connects the Pd(II) phthalocyanine and the carotenoid in the 9 and 11-double bond carotenoids is absent in the 10-double bond carotenoid, and this difference alters its electronic structure to increase the coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.