Abstract

The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin-orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV-1 cell-1 (5 K) to 0.307 states eV-1 cell-1 (300 K) and from 0.9 × 1019 cm-3 (5 K) to 2.6 × 1019 cm-3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV-1 cell-1 (5 K) to 0.198 states eV-1 cell-1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm-3 (5 K) to 2.81 × 1019 cm-3 (300 K).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.