Abstract

Thin film processes of organic radicals remain widely unknown, although these materials may have a significant technological potential. In aiming at their use in applications, we explore the electronic structure of thin films of a nitronyl nitroxide radical attached to a fluorophore core. According to our findings, this molecule maintains its radical function and, consequently, its sensing capabilities in the thin films. The films are characterized by a high structural degree of the molecular arrangement, coupled to strong vacuum and air stability that make this fluorophore-nitroxide radical an extremely promising candidate for application in electronics. Our work also identifies a quantitative correlation between the results obtained by the simultaneous use of X-ray photoemission and electron paramagnetic resonance spectroscopy. This result can be used as a standard diagnostic tool in order to link the (in situ-measured) electronic structure with classical ex situ paramagnetic investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call