Abstract

The photoisomerization kinetics of a squaraine dye has been the object both of experimental investigation and of interpretation in the framework of a qualitative theoretical model formulated by the aid of simple HMO calculations and orbital symmetry considerations. Such a model has first confirmed that the electronic structure and the spectroscopic properties of symmetrical squaraines are related to those of the parent cyanines, with ketocyanines as intermediate systems. Extension of the approach to structures twisted by 90[degree] about a polymethine bond has then provided insight into the electronic aspects and the mechanism of the photoisomerization of the squaraine under study. The reaction, previously indirectly investigated by fluorescence analysis, has been directly monitored by laser flash photolysis. These experiments indicate that, while photoisomerization is likely the main radiationless decay route from the spectroscopic minimum of the lowest excited singlet state (S(1)), the cis photoisomer is produced with only a 1% yield, likely because of an unfavourable cis/trans branching ratio from the perpendicular minimum of the S(1)-state potential energy surface. In contrast with what found for symmetrical cyanines, an increase in the solvent polarity was found to accelerate both the direct, excited-state reaction and, to a much larger extent, the ground-state back-isomerization. Such observations are consistent with predictions of the theoretical model and provide a clue for the identification of the isomerization coordinate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.