Abstract

Electronic structure and optical properties were studied for novel (Ga70La30)2S300 and (Ga69.75La29.75Er0.5)2S300 single crystals synthesized by solution-melt technique. In particular, X-ray photoelectron spectroscopy (XPS) was used to measure core-level binding energies and valence-band spectra for as-synthesized and Ar+ ion-irradiated surfaces of these crystals. Presented XPS measurements show that the (Ga70La30)2S300 and (Ga69.75La29.75Er0.5)2S300 single crystals are rather stable in relation to Ar+ ion-irradiation. X-ray emission (XE) S Kβ1,3 and Ga Kβ2 bands were measured for the (Ga70La30)2S300 crystal giving information on the energy distribution of the S 3p and Ga 4p states, respectively. A comparison of these XE bands on a common energy scale with the XPS valence-band spectrum of (Ga70La30)2S300 indicates that the principal contribution of the S 3p and Ga 4p states occurs mainly at the top and in the central part of the valence band, respectively. In addition, optical absorption and photoluminescence spectra of the crystals were explored. Energy band gap values are estimated as 2.01 and 1.99 eV at room temperature for the (Ga70La30)2S300 and (Ga69.75La29.75Er0.5)2S300 crystals, respectively. Observed high-intensity green photoluminescence band when excited by a laser emitting at 810 nm suggests that the (Ga69.75La29.75Er0.5)2S300 crystal is a very attractive material for infrared to visible light conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.